
Departmental Coversheet

MSc in Computer Science 2020-2021

Project Dissertation

Project Dissertation title: Conformal time-series forecasting

Term and year of submission: Trinity 2021

Candidate Number: 1047602

1

Conformal time-series

forecasting

Candidate number: 1047602

University of Oxford

A dissertation submitted in partial fulfilment of
the requirements for the degree of

Master of Science

Trinity 2021

Abstract

Current approaches for (multi-horizon) time-series forecasting using re-
current neural networks (RNNs) focus on issuing point estimates, which
are insufficient for informing decision-making in critical application do-
mains wherein uncertainty estimates are also required. Existing meth-
ods for uncertainty quantification in RNN-based time-series forecasts
are limited as they may require significant alterations to the underlying
model architecture, may be computationally complex, may be difficult to
calibrate, may incur high sample complexity, and may not provide the-
oretical guarantees on the frequentist coverage of the issued uncertainty
intervals. In this work, we extend the inductive conformal prediction
framework to the time-series forecasting setup, and propose a lightweight
uncertainty estimation procedure to address the above limitations. With
minimal exchangeability assumptions, the proposed approach provides
uncertainty intervals with theoretical guarantees on frequentist coverage
for any multi-horizon forecast predictor and any dataset. We demon-
strate the effectiveness of the conformal forecasting framework by com-
paring it against existing baselines on a variety of synthetic and real-
world datasets.

Contents

1 Introduction 1

2 Background and related work 3
2.1 Multi-horizon time-series forecasting 3
2.2 Frequentist coverage . 3
2.3 Bayesian recurrent neural networks 5
2.4 Quantile recurrent neural networks 7
2.5 Deep state-space models . 9
2.6 Frequentist uncertainty estimators . 10
2.7 Conformal prediction-inspired frameworks 12

3 Conformal recurrent neural networks 15
3.1 Conformal prediction . 15
3.2 Regression nonconformity scoring . 17
3.3 Regression inductive conformal prediction 18
3.4 ICP for time-series forecasting . 20
3.5 CoRNN validity . 23

4 Implementation details 25
4.1 Implementation of the CoRNN architecture 25
4.2 Implementation of baseline architectures 27
4.3 Supplementary code . 28

5 Experiments 29
5.1 Experiments on synthetic data . 29
5.2 Experiments on real-world data . 34

6 Extensions 38
6.1 Normalised inductive conformal prediction 38
6.2 Experiments . 39

7 Conclusion 41

A Additional experiment details 42
A.1 Synthetic data . 42
A.2 Real-world datasets . 42

Bibliography 46

i

1 Introduction

Time-series forecasting tasks are central to a broad range of application domains, in-

cluding stock price predictions [1, 2], service demand forecasting [3, 4], and medical

prognoses [5, 6, 7]. Recurrent neural networks (RNNs) and their variants (e.g.,

LSTM, GRU, etc.) constitute an instrumental class of models that are most com-

monly used to carry out time-series forecasting tasks [8, 9]. These models, how-

ever, are usually used to issue point predictions—i.e., singular estimates of the fu-

ture values of a time-series. In many high-stakes applications—such as finance and

medicine—these are not enough; we also need estimates of uncertainty that would

be used for accurate risk assessment when using a model’s forecasts to inform de-

cisions [10]. For example, clinical practitioners need to make treatment decisions

accounting for all potential scenarios, where less likely scenarios may have graver

consequences and require more care compared to the more likely scenarios [11, 12].

While various methods for uncertainty estimation in standard feed-forward neural

networks have been recently proposed [13, 14, 15], equivalent methods for RNN-

based time-series models are still under-explored. Existing solutions include Bayesian

recurrent neural networks [16, 17, 18], quantile regression models [3, 19], latent vari-

able models with deep state-space architectures [6, 20], and post-hoc uncertainty es-

timates using bootstrapping or jackknife procedures [21, 22]. Each of these solutions

has its own limitations: Bayesian models may be difficult to calibrate, bootstrapping

methods scale poorly for RNNs with large number of parameters, and quantile pre-

dictors may “overfit” their uncertainty estimates. Almost all existing methods share

at least one of the two major drawbacks: (1) they require substantial modifications

1

to the underlying model architecture, and (2) they provide no theoretical guarantees

on frequentist coverage, with the exceptions being computationally intractable.

In this work, we aim to address the above limitations by extending conformal pre-

diction (CP) [23, 24]—a framework designed to construct prediction intervals in

classification and regression problems with guaranteed finite-sample frequentist cov-

erage rates from scalar, exchangeable observations—to the time-series forecasting

setup, where the observations and predictions involve temporally dependent, poten-

tially multivariate sequences that and are not, in general, directly comparable due

to differences observation lengths, irregular observation frequencies, and variations

in temporal dynamics (whereas comparison between training points is a key step in

conformal prediction). We derive a novel, computationally efficient conformal fore-

casting framework that can leverage any underlying point-forecasting model to pro-

duce upper and lower bounds for multi-step predictions, so that frequentist coverage

holds jointly across the entire prediction horizon. We focus on RNN-based confor-

mal forecasting architectures, which we call conformal recurrent neural networks,

and explore their effectiveness in providing valid and efficient coverage intervals.

Outline

The rest of this work is organised as follows. In Chapter 2, we formalise the un-

certainty quantification in multi-horizon time-series forecasting problem and discuss

current deep learning literature for deriving the uncertainty intervals. In Chapter 3,

we introduce the conformal prediction framework and show how it can be extended

to time-series forecasts, proposing a novel conformal recurrent neural network ar-

chitecture. In Chapters 4 and 5, we present the implementations of baseline and

proposed architectures, and compare performance of predicted coverage intervals in

synthetic and real-world settings. In Chapter 6, we briefly explore a technique for

improving conformal forecasting performance. We conclude with Chapter 7.

2

2 Background and related work

In this chapter, we formalise the multi-horizon time-series forecasting problem and

its uncertainty quantification in terms of frequentist multi-horizon coverage. We

then discuss the broad classes of approaches that have been proposed in the previous

deep learning literature in order to tackle this problem; we summarise the relative

advantages and limitations of the most popular models, thereby motivating the

need for a more powerful framework for uncertainty quantification in time-series

forecasting, which is the subject of this work.

2.1 Multi-horizon time-series forecasting

Let yt:t′ = (yt, yt+1 . . . , yt′) be a time-series of d-dimensional observations yt, . . . , yt′ ∈

Rd that start at time step t and end at time step t′. The goal of the multi-horizon

time-series forecasting problem is to predict future values

ŷ(t′+1):(t′+H) = (ŷt′+1, . . . , ŷt′+H) ∈ RH×d, (2.1)

where H is the number of steps to be predicted (the prediction horizon), given the

history of observed values y1:t′ .

2.2 Frequentist coverage

For critical applications, we are interested in the uncertainty associated with the

forecast—for each time step h in the prediction horizon, we would like to obtain

prediction intervals of the form [ŷLt+h, ŷ
U
t+h], h ∈ {1, . . . , H}, so that the ground

3

truth value yt+h is contained in the interval with a sufficiently high probability.

This is illustrated in Figure 2.1 below.

time
0 1 2 3 4

prediction horizon

5 6 7

prediction time

pr
ed

ict
io

n
in

te
rv

al

Figure 2.1: Depiction of the forecasting setup with uncertainty intervals.
Black dots indicate the ground truth observations and red dots represent the predic-
tions of the point forecaster; the shaded region is the associated uncertainty interval.

One way to quantify how well the predicted forecast intervals capture the true series

is to fix a desired frequentist joint coverage level 1 − α (with the corresponding

error rate or significance level α), such that the ground-truth values of the entire

time-series trajectory are contained within the intervals; i.e.,

P
[
yt+h ∈ [ŷLt+h, ŷ

U
t+h], ∀h ∈ {1, . . . , H}

]
≥ 1− α. (2.2)

Alternatively, we can define independent coverage for each time-step in the prediction

horizon separately; for a coverage level 1− α,

P
[
yt+h ∈ [ŷLt+h, ŷ

U
t+h]
]
≥ 1− α, ∀h ∈ {1, . . . , H}. (2.3)

4

2.3 Bayesian recurrent neural networks

In this and following sections, we present the broad classes of approaches that have

been previously proposed in the deep learning literature to tackle the uncertainty

estimation problem in the time-series setting. We focus on recurrent neural network

(RNN)-based architectures as they are adapted for sequential data processing and

are therefore the most commonly applied architecture type for time-series forecasting

purposes.

We start withBayesian recurrent neural networks [16, 17, 18], which extend the

ideas of Bayesian inference for standard feed-forward neural networks to the RNN

architectures. The key idea of Bayesian neural networks (BNNs) is to express the

model (epistemic1) uncertainty through distributions on model parameters [25, 26].

More formally, given a dataset D = {(x(i), y(i))}Ni=1 consisting of observations x(i)

and targets y(i), and a feed-forward neural network parameterised by weights w, the

learning process involves the computation of a posterior distribution of the weights

having observed the dataset:

p(w|D) =
p(D|w)p(w)

p(D)
, (2.4)

where p(w) is the prior distribution of the weights, p(D|w) is the likelihood of the

observed dataset for a given model parameterisation, and the term p(D) represents

the evidence. We capture the model uncertainty for a new, previously unobserved

example x′ using a posterior predictive probability distribution over the output space

y, denoted p(y|x′,D). In BNNs, this distribution can be obtained by marginalising
1Contrast with aleatoric uncertainty on the uncertainty of the data [12].

5

out the parameters:

p(y|x′,D) = E∼p(w|D)[p(y|x′,w,D)] =

∫
p(y|x′,w,D)p(w|D) dw. (2.5)

However, even with moderate size neural networks containing thousands of parame-

ters and trained on datasets of similar orders of magnitude, exact Bayesian inference

quickly becomes infeasible; various approximation techniques become necessary to

obtain the posterior weight distributions and predictions in practice. Two broad

classes of solutions to this include Monte Carlo sampling and variational inference.

Markov chain Monte Carlo (MCMC) approach approximates the posterior through

sampling methods where subsequent samples eventually become marginally dis-

tributed according to the target distribution—for example, through simulating the

Hamiltonian dynamics of the system [27, 28], with additional techniques [29, 30] for

improving state exploration or reducing the computational costs for large datasets.

Variational inference is another general approach which works by approximating

the intractable posterior distribution p(w|D) with a simpler distribution qλ(w) that

is characterised by its variational parameters λ. The variational parameters are

then optimised to minimise the variational free energy, which is a cost function

corresponding to the distance between the variational and true posterior distribu-

tions [31]:

F(D, λ) = KL[qλ(w) ‖ p(w)]− Eqλ(w)[log p(D|w)], (2.6)

where KL denotes the Kullback-Leibler divergence. Hinton and Van Camp [32]

and Graves [33] presented gradient-based optimisation procedures by reformulating

F in terms of the minimum description length (MDL) loss function and applying

that to limited classes of prior and posterior distributions; Kingma and Welling

[34], Hoffman et al. [35] have introduced stochastic techniques to variational infer-

6

ence. Blundell et al. [31] improved and generalised the previous approaches with

a more efficient procedure known as Bayes by Backprop, where optimisation of F

builds directly on the standard back-propagation algorithm and can be used with

more choices of distributions; Fortunato et al. [16] extended Bayes by Backprop to

recurrent neural networks. In another line of research, Gal and Ghahramani [36]

have shown that the existing dropout technique, where the weights of the neural

network are randomly zeroed out (dropped) with each forward pass, corresponds

to an approximation of a probabilistic deep Gaussian process [37]. This motivates

the use of dropout as a Bayesian technique for representing model uncertainty: the

posterior distributions on outputs are obtained by using dropout to first train the

neural network, and then to obtain multiple output samples as different units are

dropped at the evaluation stage (the technique known as MC dropout). Gal and

Ghahramani [38] further show a theoretically grounded application of dropout in

recurrent neural networks. The main advantage of MC dropout is that it bypasses

the need to double the number of training parameters (as each weight of a standard

neural network needs to be represented by two parameters of a probability distribu-

tion in a BNN) and the only modification to the training procedure is the addition

to dropout layers; however, while this is computationally efficient, the calibration of

MC dropout models is challenging [21]; as such models account for risk (inherent

stochasticity of the model) rather than the uncertainty over its parameters [39]. In

addition, even the exact Bayesian inference does not result in intervals with the

frequentist coverage as described in Equations (2.2) and (2.3) [21, 40].

2.4 Quantile recurrent neural networks

Another line of research concerning uncertainty estimation in time-series forecasts

is based on quantile recurrent neural networks [19, 3]. Quantile RNNs could

be thought of as a deep neural network extension of quantile regression [41] for

7

sequential inputs—for each horizon h and some quantile a, the quantile regression

model would predict such ŷ(a)t+h that

P[yt+h ≤ ŷ
(a)
t+h | y1:t] = a. (2.7)

In other words, instead of returning a series of point estimates across the prediction

horizon, quantile RNNs learn the prediction intervals directly, learning both the

upper and lower bounds of the forecast (i.e. [ŷLt+h, ŷ
U
t+h] from Section 2.2) as separate

targets. While standard quantile regression can be solved analytically, in deep neural

networks this can only be done via optimisation (gradient descent) methods. We

replace the standard mean squared error (MSE) loss function with the generalised

quantile (or pinball) loss function, defined as:

La(y, ŷ) = a(y − ŷ)+ + (1− a)(ŷ − y)+, (2.8)

where (·)+ = max(0, ·) (see e.g. [3] for details). A recent quantile RNN multi-horizon

time-series forecasting model is the multi-horizon quantile RNN (MQ-RNN) model

developed by Wen et al. [3], which has been successfully applied for large-scale

forecasting in several real-world domains. At each step, MQ-RNN combines the

RNN-generated state vector with some time-step specific static data to generate

1) a new state vector (using a global MLP) and 2) sets of quantiles, one for each

time-step in the horizon (using horizon-specific local MLPs). However, since the

quantiles are obtained separately from each other and are optimised using gradient

descent rather than analytical methods, they are not mathematically rigorous. By

having no mathematical constraints on the quantiles, MQ-RNNs are susceptible to

problems such as quantile crossing, such that

∃a < b. ŷ
(a)
t+h > ŷ

(b)
t+h,

8

resulting in less extreme quantiles returning wider intervals compared to the more

extreme quantiles. A more recent spline quantile function RNN (SQF-RNN) model,

developed by Gasthaus et al. [19], attempts to avoid this problem, as well as the gen-

eral limitation of learning different quantiles separately. SQF-RNN learns to model

the quantile function—mapping each quantile a to its corresponding ŷ(a)t+h—directly,

by representing the quantile function with mathematically constrained spline curves

and training the RNN to return the parameters defining those curves rather than the

target quantiles themselves. Instead of the quantile loss function, the training ob-

jective is now the continuous-ranked probability score (CPRS), which measures the

compatibility of the spline curve-defined quantile function F−1 with an observation

y, and corresponds to the quantile loss aggregated over all quantiles:

CPRS(F−1, y) =

∫ 1

0

2La(F−1(a), y) da. (2.9)

However, both MQ-RNN and SQF-RNN do not provide any theoretical guarantees

on the accuracy of the learnt quantile distribution; they are still at risk of overfitting

the quantiles themselves and be confident about their (wrong) quantile estimates.

This is especially true considering their low sample efficiency [21], which means

that in low data settings—where precise uncertainty estimation arguably matters

the most—the quality of the learnt quantiles suffers.

2.5 Deep state-space models

State-space models (SSMs) represent the time-series in terms of its latent state,

which in turn captures important information about the structural components of

the series, such as its level, trend, and seasonality [42]. The evolution of the latent

states in an SSM is determined by its transition matrix (which is deterministic),

the innovation matrix (which is stochastic), as well as any other model-specific

9

parameters, while the target values are determined from the latent state using a

probabilistic observation model [20]. This is a mathematically principled approach

to parameterise the dynamics of a single time-series; to extend this to sets of mul-

tiple time-series (see observation paradigms in Figure 2.2, discussed in more detail

in Section 2.7), deep state-space models [20] use RNNs to obtain the SSM that

is shared between the series in the dataset—in other words, the underlying RNN

learns a single parameterisation of transition and innovation matrices, the obser-

vation model, and other parameters. Most of the SSM-based methods are limited

to various structural assumptions about the time-series dynamics, such as Marko-

vianity, where it is assumed that the transition dynamics stay constant over time.

In some other cases the problem domain does not allow for decoupling of observa-

tions and state transitions; Alaa and van der Schaar [6] attempt to address these

limitations through attentive state-space models (ASSMs), where the state transi-

tions depend on the entire history, rather than just the previous latent state. The

transition dynamics between the latent states p(lt|lt−1) as well as the observations

p(yt|lt) are probabilistic—in case of the ASSM, the posterior distribution is deter-

mined through variational inference; in simpler models the distribution is generally

approximated through Monte Carlo methods. Sampling potential trajectories can

therefore represent the uncertainty of the model. However, most SSM-based models

have important limitations of requiring simplifying assumptions (such as Marko-

vian dynamics), or being tailored to a specific application domain (like ASSMs are),

which limits their application to general, assumption-free time-series modelling and

forecasting problems.

2.6 Frequentist uncertainty estimators

To tackle the difficulties in calibration of Bayesian models, the lack of coverage guar-

antees of quantile models, and the limiting assumptions of deep state-space models,

10

more recent works have explored the potential of frequentist uncertainty esti-

mators that are based on variations of jackknife resampling [43, 44]. Some notable

models in this direction include the discriminative jackknife introduced in Alaa and

van der Schaar [22] and the blockwise jackknife introduced in Alaa and van der

Schaar [21]. The former is a general procedure to make the confidence intervals pro-

duced by classical jackknife satisfy both coverage and discrimination (adaptiveness

to high and low-confidence prediction) requirements [44]. It is based on leave-one-out

resampling; however, rather than retraining the models on each resampled dataset

(which would be too expensive for deep neural networks), it instead uses influence

functions to determine the change in neural network weights that training on a

resampled dataset would result in. To make the intervals adaptive, confidence in-

tervals are constructed accounting both for the marginal model generalisation error

(based on leave-one-out residuals) and for the local prediction variability (based on

the effects a particular training point has on prediction errors in the test dataset).

The blockwise jackknife recurrent neural network (BJ-RNN) [21] model is based on a

similar procedure that is adapted to RNNs trained on sequential (time-series) data.

Here, the “perturbed” RNN models are again computed using influence functions,

but alternative datasets are generated not only by removing individual observations

of the entire time-series, but also by removing intervals of particular time-steps

across the time-series observations. At test time, all the perturbed models are run

on a testing point, thereby obtaining a distribution of predictions that represent the

coverage interval. The BJ-RNN model has been shown to outperform the MQ-RNN

(Section 2.4) and MC dropout RNN (Section 2.3) models while having theoretical

guarantees, better sample efficiency and additionally being a post-hoc procedure (i.e.

it can be applied on top of any RNN model without changing the underlying archi-

tecture or compromising its performance). However, it has the key limitation of a

prohibitive time and space complexity—for P parameters of the underlying RNN,

the exact procedure involves estimation of the inverse Hessian matrix, which takes

11

O(P 3) time, while available approximations, such as stochastic Hessian-vector prod-

uct estimation used in the paper—following the methods of Pearlmutter [45], Agar-

wal et al. [46]—may compromise the correctness of results. Moreover, since all per-

turbed models have to be evaluated for every example even at the evaluation stage,

and because of the large number of possible blockwise perturbations, the BJ-RNN

model does not scale beyond small datasets containing few short time-series.

2.7 Conformal prediction-inspired frameworks

Our proposed method builds on conformal prediction (CP), a general framework

aiming to determine the levels of confidence for any predictive model using past

experience [23, 24]. For a given confidence or coverage level 1 − α and a learning

algorithm producing a point estimate ŷ, the CP algorithm returns a prediction region

that is guaranteed to contain the true value y with probability of at least 1 − α

(thereby providing frequentist coverage). While it has been initially developed for

an online prediction setting of accumulating datasets, it can also work in the batch

setting when a separate calibration dataset is available (an approach called inductive

conformal prediction; ICP [47, 48]). The conformal prediction framework will be

discussed in more detail in Chapter 3.

To our knowledge, little work has been done towards applying CP methods for

time-series forecasting. The main challenge is that conformal prediction assumes

exchangeability, so that any permutation of the observations in the dataset is equally

likely. However, within a single time-series, the time-steps (y1, . . . , yt) are inherently

non-exchangeable, since their ordering and temporal dependencies is exactly what

constitutes a time-series (see the left panel in Figure 2.2 below). Therefore, naïvely

applying conformal prediction to a single time-series to derive prediction intervals

for future observations is not methodologically valid, and any frequentist coverage

guarantees are lost (although there have been works, such as Kowalczewski [49],

12

that have nevertheless attempted to do this). One notable exception is the recent

Ensemble Batch Prediction Interval (EnbPI) algorithm, introduced in Xu and Xie

[50]. EnbPI bypasses the exchangeability assumption required by the standard CP

framework—while still providing approximately valid prediction intervals—by using

an ensemble of bootstrapped estimators, each of them trained on a fixed-length sec-

tion of the time-series with one of the time-steps removed. However, this method is

still limited and does not fully account for the complexity of the time-series forecast-

ing problem. First, as discussed in Section 4.1 of Xu and Xie [50], EnbPI introduces

certain assumptions—such as the strongly mixing error process—which may limit its

applicability to some types of forecasting problems. In addition, we argue that the

paradigm of learning from a single time-series—while useful in cases where indeed

only one time-series is available—may not be optimal in settings where datasets con-

tainmultiple time-series, the shared patterns of which could potentially be exploited.

The distinction between the two paradigms is illustrated in Figure 2.2. To the best

of our knowledge, no existing method has applied conformal prediction to the latter

setting; yet the datasets of multiple time-series are very common in domains such

as healthcare, where each independent patient would have their own time-series of

clinical encounters or vital sign measurements. While methods such as EnbPI would

have to learn a separate bootstrapped ensemble for each new patient, being able to

learn from all patients at once is arguably more useful—in this way, information in

one time-series can be leveraged to produce better forecasts in another.

13

temporally dependent
(non-exchangeable)

observations

independent
(exchangeable)

observations

Figure 2.2: Time-series observation paradigms. (Left) The dataset is assumed
to comprise a single time-series, with observations being individual time-steps within
the time-series. These observations are temporally dependent. (Right) The dataset
consists of a set of independent time-series, where the entire series is treated as an
observation. Independence of time-series implies their exchangeability.

Summary

We summarise the most popular RNN-based probabilistic forecasting methods in

Table 2.1 below. The proposed conformal recurrent neural network (CoRNN) is

introduced and explained in more detail in the following Chapter.

Table 2.1: Overview of the most popular RNN-based probabilistic fore-
casting methods. For reference we include the proposed CoRNN model.

Method Paradigm Architecture Time-series
observations

Frequentist
coverage

Bayesian RNNs [16] Bayesian Built-in Multiple —
MC dropout [36] Bayesian (approx.) Built-in Multiple —
MQ- [3], SQF-RNN [19] — Built-in Multiple —
ASSM [6] — Built-in Multiple —
BJ-RNN [21] Frequentist Post-hoc Multiple 1− 2α
EnbPI [51] Frequentist Built-in Single 1− α
CoRNN (proposed) Frequentist Post-hoc Multiple 1− α

14

3 Conformal recurrent neural networks

In this chapter, we introduce the conformal recurrent neural network (CoRNN)

architecture. We start off by providing further background on conformal prediction,

and then extend the framework to the time-series forecasting setup while maintaining

joint coverage guarantees.

3.1 Conformal prediction

In the classical conformal prediction (CP) framework [23, 24, 52], given a set of

observations D = {(x(i), y(i))}li=1, a new example x(l+1), and the error rate α (equiv-

alently, coverage level 1− α), the aim is to return a prediction region (a prediction

set for classification or a prediction interval for regression) Γα such that, with prob-

ability of at least 1− α, the true label y(l+1) is contained within Γα:

P[y(l+1) ∈ Γα] ≥ 1− α. (3.1)

The conformal prediction framework is distribution-free (i.e. it does not have any as-

sumptions on the distribution of the underlying data), and applies to any underlying

predictive model, as long as the exchangeability assumption is satisfied:

Assumption 1. (Exchangeability) In a dataset of l observations {(x(i), y(i))}li=1,

any of its l! permutations are equiprobable. Note that independent identically dis-

tributed (iid) observations satisfy exchangeability.

The CP framework has originally been designed for the online setting, where data

15

is observed continuously and prediction regions for the next observation are recom-

puted whenever new data becomes available. The regions are estimated as follows.

For a new example x(l+1) and its potential label y, we estimate how unusual (non-

conforming) would the full observation (x(l+1), y) be compared to the the already

observed dataset D (defined as before). Following the notation in Zeni et al. [52],

such nonconformity score for the new example (x(l+1), y) is denoted as

Rl+1 = A(D, (x(l+1), y)), (3.2)

and, in the more general case,

Ri = A
(
D \ {(x(i), y(i))}, (x(i), y(i))

)
. (3.3)

The alternative of including the new example in the dataset and computing Rl+1 =

A(D∪{(x(l+1), y)}, (x(l+1), y)) and Ri = A
(
D, (x(i), y(i))

)
is also possible. The choice

for which alternative is used depends on the application—the latter will be used for

regression-based conformal predictors in the next section. Theoretical guarantees

remain in either case. See Zeni et al. [52] for details.

Now, since observations are exchangeable, we can compute the empirical noncon-

formity score distribution for each example in the dataset, {Ri}li=1, as well as the

nonconformity core for the new example Rl+1. We compute the p-value of the non-

conformity of the new example,

p(x(l+1),y) =
|{i = 1, . . . , l + 1 : Ri ≥ Rl+1}|

l + 1
, (3.4)

which intuitively represents the fraction of examples within the observed dataset D

that are more nonconforming than the new example x(l+1) with the assumed label

y. A small p-value implies that the potential label y is very unusual and is unlikely

16

to be in the prediction set; a large p-value means that the potential label y is typical

and should be included in the prediction set. The threshold of the p-value depends

on the desired coverage level; we include in the prediction set all labels y the p-values

of which are larger than the target error rate α:

Γα(x(l+1)) =
{
y : p(x(l+1),y) > α

}
. (3.5)

3.2 Regression nonconformity scoring

The key property of conformal prediction is that, as long as the assumption of

exchangeability is satisfied, the prediction regions are always valid, regardless of the

choice of the nonconformity score. Following Proposition 2.1 in Zeni et al. [52]:

Property 1. (Validity) Under the exchangeability assumption, any conformal pre-

dictor will return the prediction region Γα(x(i)) such that the probability of error

y(l+1) /∈ Γ(α) is not greater than α. Equivalently, Equation (3.1) is satisfied.

We note that this probability refers to the correctness of the conformal prediction

procedure, rather than that of the prediction region; i.e. it is the procedure that has

the probability 1−α of being correct (before any data is observed), rather than the

returned prediction region Γα. For further discussion of this see Shafer and Vovk

[24].

While validity is achieved by any conformal predictor (including one where non-

conformity scores are obtained using a random number generator), the intervals of

some conformal predictors will be wider—and less informative for real-world use

cases—than others (infinite-width intervals or sets containing all classes will always

achieve perfect coverage). We therefore wish to obtain intervals that are also effi-

cient, i.e. they achieve the desired coverage with minimal interval width. Finding

the most efficient conformal predictor (the corresponding nonconformity score) is in

17

general difficult, as this may depend on the exact properties of the dataset. The

most sensible and widely used choice for regression problems—which the time-series

forecasting problem is an example of—is the nonconformity score of the form

A(D, (x(i), y(i))) = ∆(M(x(i)|D), y(i)), (3.6)

whereM is the underlying (auxiliary) model trained on the dataset D (applied to the

example x(i) to give a prediction ŷ(i)), and ∆ is some distance metric. The choice

for M depends on the dataset and the problem; although any regression model,

including neural network architectures, is compatible with the framework. As for

the distance metric, when ∆(ŷ, y) = |ŷ − y| we have

Ri = |ŷ(i) − y(i)| (3.7)

which corresponds to the residual error between the prediction of the underlying

model and the true label, which is particularly useful for inductive conformal pre-

diction, as we discuss below.

3.3 Regression inductive conformal prediction

While the standard conformal (transductive1) predictors can work well for small

accumulating datasets with discrete labels y (such as in classification problems),

this is not computationally feasible for real-valued dependent variables (in regression

problems, including time-series forecasting), as all y ∈ R cannot be individually

tested for their p-value. In addition, the underlying model M cannot be efficiently

retrained with each new available example, especially when M is a complex model
1Alternative definitions for “transductive” predictors exist. We refer to the standard setting as

transductive in contrast to the inductive conformal prediction, following the categorisation in Zeni
et al. [52]. For further discussion see Vovk [53].

18

such as a neural network. To tackle these challenges, the procedure is modified to

work in the inductive setting, where instead of computing the prediction intervals

directly from the dataset and a single example, considering each possible label, a

general rule is derived according to which every y ∈ R can be correctly assigned to

be either within or outside of the prediction interval.

In this new inductive conformal prediction (ICP) setup [54, 55], the training set is

split into the proper training set of size n and a calibration set of size m: D =

Dtrain ∪ Dcal. The true training set is used to train the underlying predictive model

M , and the calibration set is used to obtain the nonconformity scores for each

calibration example x(n+i) with label y(n+i):

Ri = |y(n+i) −M(x(n+i))|, ∀i ∈ 1, . . . ,m, (3.8)

Now, instead of computing the distribution of p-values, we use the distribution of the

calibration nonconformity scores (or residuals) {Ri}mi=1. We observe that the choice

of the distance metric ∆(ŷ, y) = |ŷ−y| allows us to derive the set of values of y that

will satisfy Equation (3.5): in particular, we compute a critical nonconformity score

ε̂ that is the d(m+1)(1−α)e-th smallest residual [52] (or, equivalently, the min((m+

1)(1−α)/m, 1))-th quantile of the calibration nonconformity score distribution; with

(n + 1)/n term correcting for the finite sample). Our prediction intervals are thus

given by:

Γα(x(l+1)) = [ŷ(l+1) − ε̂, ŷ(l+1) + ε̂], (3.9)

where ŷ(l+1) = M(x(l+1)).

19

3.4 ICP for time-series forecasting

So far we have considered the case when the labels y ∈ R are scalar, but multi-

horizon time-series forecasts return H (d-dimensional) values (see Section 2.1). We

now extend the ICP framework to handle the multi-horizon forecasting setup, while

maintaining the validity of the resulting multi-horizon forecast intervals. In this

work, we focus on d = 1.

Let D be the set of exchangeable observations of the form (y1:T , yT+1:T+H), where

y1:T is the time-series consisting of T observed steps, and yT+1:T+H is the H-step

forecast. Note that the label yT+1:T+H is now a H-dimensional value, in contrast

with the scalar y value from before. Due to the sequential nature of our task and

complex multidimensional inputs, we will use an RNN as the underlying model

M . We set M to produce multi-horizon forecasts directly—where at each time step

t the model predicts all values of the H-step target yt+1:t+H directly from a single

embedding—rather than recursively—where a single prediction is obtained at a time,

and successive values are obtained by iteratively feeding the predictions back into

the RNN. This distinction is illustrated in Figures 3.1 and 3.2.

prediction horizon

prediction time

Figure 3.1: Direct multi-horizon forecasting strategy. The values for the 3-step
forecast ŷ5:7 are obtained at the same time from a single hidden state h4.

We motivate our choice of the direct strategy by it being more robust to error accu-

20

prediction horizon

prediction time

Figure 3.2: Recursive multi-horizon forecasting strategy. The forecast ŷ4:6 is
obtained by successively feeding in the previous predictions back into the RNN.

mulation [56, 3], and the predictions being independent conditional on the internal

time-series embedding stored in M—this will allow us to maintain the theoreti-

cal guarantees for joint prediction interval coverage. Now we replace the single-

dimensional nonconformity score defined earlier by its H-dimensional counterpart,

Ri =
[
|y(i)t+1 − ŷ

(i)
t+1|, . . . , |y

(i)
t+H − ŷ

(i)
t+H |

]>
(3.10)

where
[
ŷ
(i)
t+1, . . . , ŷ

(i)
t+H

]>
= M(y

(i)
1:t). Since we produce H predictions that are condi-

tionally independent given the internal state of the underlying model, we can apply

Bonferroni correction to the obtained critical calibration scores by dividing the de-

sired error rate α by H, so that the critical nonconformity scores ε̂1, . . . , ε̂H are the

min((m+ 1)(1−α/H)/m, 1)-th quantiles in the corresponding nonconformity score

distributions. The resulting set of prediction intervals is then

Γα1

(
y
(l+1)
(1:t)

)
, . . . ,ΓαH

(
y
(l+1)
(1:t)

)
, (3.11)

21

where

Γαh

(
y
(l+1)
(1:t)

)
=
[
ŷ
(l+1)
t+h − ε̂h, ŷ

(l+1)
t+h + ε̂h

]
∀h ∈ {1, . . . , H}. (3.12)

In summary, the resulting conformal recurrent neural network (CoRNN) model is

an RNN that issues a point prediction for its forecast, along with a prediction region

that covers the forecast trajectory. The entire procedure for constructing prediction

intervals in CoRNN is illustrated in Figure 3.3 and summarized in Algorithm 1.

time steps

(a) Construction of critical nonconformity scores

prediction time

1 2 3 4 5 6 7 8

(b) Forecasting on a new time-series

prediction horizon

prediction time

Figure 3.3: CoRNN uncertainty estimation procedure. (a) The calibration
set is used to obtain the empirical distribution of nonconformity scores ε̂h, and its
appropriate quantile is selected depending on the desired target coverage level. (b)
Critical nonconformity scores are used to obtain the prediction interval.

22

Algorithm 1 Conformal recurrent neural network (CoRNN)
1: Input: A trained model M producing H-step forecasts,
2: calibration dataset Dcal =

{
(y

(i)
1:t, y

(i)
t+1:t+H)

}m
i=1

,
3: target error rate α, the size of the training set n.
4: Output: Critical nonconformity scores ε̂1, . . . , ε̂H .

5: Initialize ε1 = {}, . . . , εH = {}.
6: for i = 1 to m do
7: ŷ

(i)
t+1:t+H ←M(y

(i)
1:t).

8: for h = 1 to H do
9: εh ← εh ∪ {|ŷ

(i)
t+h − y

(i)
t+h|}.

10: end for
11: end for
12: for h = 1 to H do
13: // Bonferroni and finite sample correction
14: ε̂h ← min((m+ 1)(1− α/H)/m, 1)-th quantile of εh.
15: end for
16: return ε̂1, . . . , ε̂H .

17: For a new time-series example y∗1:t:
18: ŷ∗t+1:t+H ←M(y∗1:t).

19: return intervals ŷ∗t+1 ± ε̂1, . . . ŷ∗t+H ± ε̂H .

3.5 CoRNN validity

Finally, we show the theoretical motivations behind our approach via the following

Theorem, which provides validity for intervals obtained from Algorithm 1.

Theorem 1. Let D =
{(
y
(i)
1:t, y

(i)
t+1:t+H

)}l
i=1

be the dataset of exchangeable time-

series observations and their H-step forecasts obtained from the same underlying

probability distribution. Let M be the recurrent neural network predicting H-step

forecasts using the direct strategy. For any significance level α ∈ [0, 1], the intervals

obtained by the ICP-based conformal forecasting algorithm will have the error rate

of at most α; alternatively,

P (∀h ∈ {1, . . . , H}. yt+h ∈ [ŷt+h − ε̂h, ŷt+h + ε̂h]) ≥ 1− α. (3.13)

23

Proof. Due to the direct forecasting strategy, every step in the horizon can be

treated as a separate inductive conformal predictor that uses the same underlying

model M (with the final predictions derived from the internal state being indepen-

dent) and the same dataset D. Independent validity of each of the H ICPs follows

from Proposition 1 in Vovk [57]. Setting the error rate of each of the H ICPs to

α/H and applying Boole’s inequality we obtain that the combined error rate of the

H-step forecaster is α as required. �

Summary

In this chapter, we presented the main contribution of this work, which is an ex-

tension of the ICP framework to the multi-horizon time-series forecasting setting.

We view the time-series forecasting problem as a multi-target regression problem,

where at each time-step the input is the state of a recurrent neural network, and

the output is the (direct) multi-horizon forecast. We use the RNN as the underlying

model to the ICP procedure, which now returns multiple prediction intervals, one

for every step of the horizon. Similar to the multiple hypothesis testing problem,

to maintain validity of the predictions across the entire horizon simultaneously, we

use the Bonferroni correction scheme to adjust the critical values of the empirical

nonconformity score distributions. Our proposed CoRNN architecture addresses the

limitations of related work discussed in Chapter 2: it is computationally efficient

(as the only bottleneck is the training time for the underlying model), it does not

require any modifications to the underlying predictive model, and it provides the-

oretical validity guarantees for any underlying multi-horizon forecast predictor and

any dataset with minimal exchangeability assumptions.

24

4 Implementation details

We now briefly present the most important implementation aspects of the baseline

CoRNN architecture and selected competing baselines.

4.1 Implementation of the CoRNN architecture

The proposed CoRNN architecture is an extension of the underlying RNN model

with a conformal forecasting procedure, where the trained model is calibrated as

described in Algorithm 1, Section 3.4 of the previous Chapter. We chose to imple-

ment the proposed architecture using PyTorch [58], one of the most popular deep

learning frameworks with tensor-based computation, automatic differentiation and

hardware acceleration support. PyTorch relies on Python, a language popular in

the machine learning community especially for its variety of widely supported open

source scientific computing and data science libraries, such as NumPy [59] and Pan-

das [60]. This choice of the language and framework, as we will elaborate further

below, will make it easier to compare the proposed architecture against the open

source PyTorch implementations of the competing baselines: with the same internal

framework and data processing methods, the comparison can be more consistent

and fair.

We implement CoRNN as a single class extended from torch.nn.Module; its argu-

ments are described in Table 4.1 and the key methods are summarised in Table 4.2.

In what follows, we describe additional considerations for the training procedure.

25

Table 4.1: Summary of the inputs to the CoRNN architecture.

Argument Description
embedding_size (Hyperparameter) Size of internal RNN state embeddings.
input_size Number of observed time-series features (default = 1).
output_size Number of features in the forecast d (default = 1).
horizon Length of the prediction horizon H.
error_rate Target error rate α.
mode Internal RNN implementation: LSTM (default), GRU, RNN.

Table 4.2: Key components of the CoRNN structure.

Method Description
fit Trains the underlying RNN model on the training dataset.
calibrate Calibrates the model by computing the nonconformity

score distributions and critical scores.
predict Returns upper and lower bounds of the multi-horizon fore-

cast.
evaluate_coverage Computes the coverage statistics for evaluation.

Training procedure Follows Algorithm 1 in the previous chapter. The underly-

ing RNN is first trained on the training dataset, where the model is optimised via

gradient descent methods (using the mean squared error loss and the Adam opti-

miser [61]) to return good direct multi-horizon point forecasts. Then the optimised

RNN is run on the calibration dataset, where for every calibration example the non-

conformity score (in this case, the absolute error between the true time-series and

the RNN forecast) is computed. Critical calibration scores are derived. For each

test example, the RNN is run to return the point forecast, and the critical values

are added to either side of the point forecast at each step of the horizon to obtain

the uncertainty interval.

Handling training sequences of different lengths CoRNN is designed to train

on sequences of different lengths in order to make use of all the available history

of observations (i.e. the t in each example y(i)1:t might be different). However, the

forecast length (horizon) remains fixed. It may be the case that the length of a

particular time-series example is shorter or equal to the length of prediction hori-

zon; then the correctness of part of the forecast (which has the length of the full

26

horizon) is not possible to check against any ground truth value. To mitigate this

discrepancy, the observation length is additionally tracked and the predictions are

masked wherever they are unverifiable.

4.2 Implementation of baseline architectures

We compare the performance of the CoRNN model against three baselines: the

Monte Carlo dropout-based RNN (DP-RNN) [36], the multi-quantile RNN (MQ-

RNN) [3], and the frequentist blockwise jackknife RNN (BJ-RNN) [21]. We use

these baselines as the most popular and representative examples of the different

paradigms for uncertainty estimation (Bayesian, quantile and frequentist for DP-

RNN, MQ-RNN and BJ-RNN respectively), and because these are the exact base-

lines that have been compared in the Alaa and van der Schaar [21] paper, where

BJ-RNN has achieved state-of-the-art time-series uncertainty estimation. The base-

line implementations have been adapted from the above-mentioned paper to main-

tain as much consistency as possible1. As part of this work, the most important

changes that have been implemented include adaptations required to produce direct

multi-horizon forecasts (as original implementations would predict one-step ahead

only); in addition, the evaluation procedures have been modified to compute the

joint coverage.

Hyperparameter selection In both CoRNN and competing baselines, the hy-

perparameters have been selected to be the same as those in the reference imple-

mentation [21]. For all the experiments discussed in the next Chapter, the hyper-

parameters are detailed in the Appendix A.
1The original code is available at https://github.com/ahmedmalaa/rnn-blockwise-jackknife.

27

https://github.com/ahmedmalaa/rnn-blockwise-jackknife.

4.3 Supplementary code

The code supplemented with this work contains three directories; influence, models

and utils. The influence directory contains the additional methods required for

BJ-RNN computation and have not been changed from the implementation in Alaa

and van der Schaar [21]. The models directory contains all the baselines that will be

compared in the following Chapter. The models/cornn.py file in particular contains

the main contribution of this work; other models contain the necessary adaptations

for the direct multi-horizon forecasting setting. Finally, the utils directory con-

tains all the necessary code for synthetic dataset generation, preprocessing code of

the real-world datasets to the different formats used by the various models, the train-

ing routines of synthetic and medical datasets, and code for the forecast evaluation.

We do not include the saved models, results or datasets due to size constraints.

28

5 Experiments

In this chapter, we showcase the performance of the proposed architecture and com-

peting baselines on a variety of synthetic and real-world medical datasets. We first

present the quantitative and qualitative performance of CoRNNs against compet-

ing baselines on small synthetic datasets with controlled properties that allow for

an in-depth comparison. We then apply the baselines to three real-world medical

datasets.

5.1 Experiments on synthetic data

We first generate the synthetic time-series consisting of three components: the au-

toregressive process determining the trend of the time-series, the seasonal process

representing periodic fluctuations in the time-series values, and the noise process

representing the inherent (aleatoric) uncertainty of the dataset.

For a time-series of length T , this is expressed mathematically as:

yt =
t∑

k=0

ak · xk + γt + εt, ∀k ∈ {1, . . . , T} (5.1)

where xt ∼ N (µx, σ
2
x), a = 0.9 is the memory parameter, γt is the stochastic seasonal

process representing periodic fluctuations, and εt ∼ N (0, σ2
t) is the noise process.

The periodic component is defined following the quasi-random walk model in Equa-

29

tions (3.7) and (3.8) of Durbin and Koopman [62]: we define

γt =

bs/2c∑
j=1

γjt, (5.2)

where γj,t+1 = γjt cosλj + γ∗jt sinλj + wjt and γ∗j,t+1 = −γjt sinλj + γ∗jt cosλj + w∗jt;

s is the period length, λj = 2π/s and wjt, w∗jt ∼ N (0, u) for some amplitude u.1.

For the noise component εt, we consider five time-dependent noise variance profiles:

σ2
t = 0.1tn (5.3)

and five static noise variance profiles,

σ2
t = 0.1n, (5.4)

for n = {1, . . . , 5}.

Results

We first demonstrate the qualitative performance of the CoRNN architecture on two

synthetic datasets containing seasonal components of different periodicities s = 2

and s = 10 but having the same noise profile. These are illustrated in Figure 5.1. In

these two examples, the higher frequency series on the left have larger errors in point

predictions (black dots vs the dashed red line) compared to the low frequency series

on the right; however, the prediction intervals (PIs) still cover the ground truth

values in both cases. We note that, due to the same noise profile in both datasets,

the prediction interval widths are similar; their shape differs, however, because of

the difference in patterns learnt by the underlying recurrent neural network.
1For implementation details, see also https://www.statsmodels.org/devel/examples/notebooks/

generated/statespace_seasonal.html

30

https://www.statsmodels.org/devel/examples/notebooks/generated/statespace_seasonal.html
https://www.statsmodels.org/devel/examples/notebooks/generated/statespace_seasonal.html

In Figure 5.2, we show the qualitative changes in prediction interval widths as time-

dependent variance increases. In the panels from left to right, the variances increase

across time-steps at increasing rate; accordingly, the PI widths become larger at a

higher rate, reflecting increasing uncertainty.

Figure 5.1: Example prediction intervals generated by the CoRNN model for
datasets with periodicities 2 and 10 and the same noise profile.

Figure 5.2: Example prediction intervals generated by the CoRNN model in the
time-dependent noise setting. Each panel uses a different time-dependent noise
variance profile, σ2

t = 0.1tn, for n = {1, . . . , 5}.

Next, we train the baselines on synthetic datasets of 1000 training sequences (in case

of CoRNN, the dataset is split in half for proper training and calibration datasets)

for the two noise variance profiles described above. We aim to forecast prediction in-

tervals for H future values yT+1:T+H for a target coverage of 90% (α = 0.1). In these

experiments, T = 10 and H = 5; we select short time-series examples due to the

computational limitations of the baseline BJ-RNN model. The RNN hyperparam-

eters for the networks underlying the two post-hoc uncertainty estimation models

are fixed in order to ensure fair comparison, and largely follow those provided in

previous work [21]. These are detailed in the Appendix A along with the time-series

model parameters. Where possible, we repeat the experiments five times with a

new randomly generated dataset; however, due to high time and space complexity,

BJ-RNN was run on a single random seed only.

31

Table 5.1: Empirical joint coverage of the different baselines run on au-
toregressive synthetic datasets (averaged across prediction horizons); reported
as mean ± std over five random seeds (excluding two unstable seeds); except for the
BJ-RNN model which was run for a single random seed only.

Empirical joint coverage

Noise mode CoRNN BJ-RNN MQ-RNN DP-RNN

Static
σ2
t = 0.1n

n = 1 93.3 ± 2.0% 100.0% 62.8 ± 2.2% 5.3 ± 1.4%
n = 2 93.0 ± 1.2% 100.0% 61.9 ± 2.8% 4.8 ± 1.2%
n = 3 93.4 ± 1.5% 100.0% 65.8 ± 0.4% 5.3 ± 1.2%
n = 4 94.8 ± 0.9% 100.0% 65.5 ± 1.2% 5.5 ± 1.6%
n = 5 94.9 ± 0.7% 100.0% 63.0 ± 4.7% 5.3 ± 1.7%

Time-dependent
σ2
t = 0.1tn

n = 1 92.9 ± 1.5% 99.4% 61.7 ± 3.9% 3.6 ± 0.5%
n = 2 91.2 ± 0.8% 100.0% 58.0 ± 2.1% 1.5 ± 0.5%
n = 3 92.1 ± 1.2% 100.0% 59.4 ± 3.1% 0.4 ± 0.2%
n = 4 91.4 ± 1.8% 97.0% 57.9 ± 1.7% 0.3 ± 0.2%
n = 5 89.7 ± 0.8% 99.4% 57.2 ± 1.5% 0.2 ± 0.3%

Table 5.2: Mean interval widths of the different baselines run on autore-
gressive synthetic datasets (reported as mean ± std over the prediction horizon).
This reports results for one of five available random seeds, with the remaining seeds
for the CoRNN model available in Appendix A. Empty result means that training
of the underlying RNN was unstable for the seed.

Interval widths

Noise mode CoRNN BJ-RNN MQ-RNN DP-RNN

Static
σ2
t = 0.1n

n = 1 — 98.45 ± 25.95 9.36 ± 1.83 3.10 ± 0.17
n = 2 18.78 ± 5.10 32.53 ± 2.92 9.44 ± 1.81 2.94 ± 0.29
n = 3 18.22 ± 4.51 35.82 ± 1.59 9.65 ± 1.84 2.94 ± 0.20
n = 4 17.72 ± 4.25 33.83 ± 2.49 9.75 ± 1.75 3.13 ± 0.18
n = 5 20.06 ± 5.54 51.23 ± 3.21 9.69 ± 1.57 3.16 ± 0.21

Time-dependent
σ2
t = 0.1tn

n = 1 20.42 ± 3.93 27.09 ± 1.16 10.57 ± 1.70 3.11 ± 0.20
n = 2 21.84 ± 4.31 104.85 ± 5.68 12.54 ± 1.91 2.88 ± 0.23
n = 3 28.08 ± 5.48 36.45 ± 1.25 15.71 ± 2.03 3.46 ± 0.16
n = 4 33.20 ± 6.30 33.24 ± 2.32 19.45 ± 2.34 3.80 ± 0.18
n = 5 37.96 ± 6.73 51.45 ± 5.37 22.82 ± 3.03 3.96 ± 0.16

Tables 5.1 and 5.2 compare the empirical joint coverage and the PI widths of the

baseline models, respectively. Both CoRNN and BJ-RNN empirically surpass the

target joint coverage rate of 90% (and error rate α = 0.1) in both static and time-

dependent noise settings, satisfying the theoretical coverage guarantees. We note

that the empirical coverage rates are indeed expected to vary around the target rate

but will in practice vary around the theoretically guaranteed values, as discussed in

more detail in Vovk [57]. We observe that, to a certain degree, CoRNN adapts to the

properties of the underlying time-series distribution: when the noise is static (and

therefore the time-series more predictable), CoRNN PI widths remain similar across

32

the datasets while maintaining the same coverage level. For the time-dependent

noise profile, uncertainty in data increases with further time steps and larger base

variance, so PI widths also in monotonically increase for different n in order to

maintain the coverage level. While the intervals for the BJ-RNN model also provide

very high (or even perfect) coverage, the intervals are in general much less efficient

(wider); however, ideally we would like to have the minimal interval width as long

as it provides target coverage, rather than overcovering with very wide intervals. In

addition, the BJ-RNN model takes prohibitively long to compute (the reason for

which it has only been tested on a single random seed and will also be excluded

from the comparisons on real data); conversely, the conformal forecasting procedure

only requires running the trained RNN model on a calibration set, at which point

adding uncertainty intervals to a prediction takes constant time. Regarding the

remaining MQ-RNN and DP-RNN baselines, these fail to generate reliable prediction

intervals altogether; and while the intervals are much shorter (more efficient), they

are not valid, which is arguably the more important property for downstream tasks

of critical nature. We find that the CoRNN model Pareto dominates all baselines in

PI width/coverage trade-off, and outperforms BJ-RNNs in computational efficiency.

Finally, the experiments on data with controlled properties provide insight on the

trade-offs between the desired coverage rate and how far into the future can the

predictions be reliably made. For a dataset with a time-dependent noise profile σ2
t =

0.1t, we fix a prediction interval and for each coverage level compute the furthest

horizon H at which the coverage can be maintained. As Figure 5.3 illustrates, low

target coverage levels allow us to make valid predictions far into the future, and

ideal coverage levels can only be achieved with horizons near the prediction point.

We additionally observe that the underlying recurrent neural network model M has

little effect on the overall trend.

33

Figure 5.3: The trade-off between the target coverage rate and prediction
horizon for a fixed prediction interval width. With increasing target coverage,
the furthest horizon that can be predicted to without exceeding a certain fixed
interval width decreases.

5.2 Experiments on real-world data

We now demonstrate the effectiveness of our procedure by forecasting real-world

time-series. We train the proposed CoRNN architecture as well as the MQ-RNN

and DP-RNN baselines on three datasets summarised in Table 5.3. (We do not

train BJ-RNN as it generally does not scale to the real-world datasets). For the

first task, we use the data from the Medical Information Mart for Intensive Care

(MIMIC-III) [63] dataset, where we forecast daily observations of white blood cell

counts of varying lengths. For the second task, we use the electroencephalography

(EEG) dataset from the UCI machine learning repository [64], where we forecast the

trajectories of downsampled EEG signals obtained from healthy subjects exposed

to three types of visual stimuli. For the final task, we forecast the daily COVID-

19 cases within the United Kingdom local authority districts [65]. All datasets are

publicly available and the medical data is anonymised. We selected these datasets to

represent a variety of scenarios of real time-series: the datasets have different orders

of magnitude of available training instances (from hundreds to tens of thousands),

have varying observation sequence lengths, have different stationarity properties

34

(e.g. the COVID-19 time-series are synchronous—each time step representing the

same point in time—the others are not), have different noise profiles (e.g. EEG

signal data will inherently have higher frequencies than MIMIC-III white blood cell

count data), have different target prediction horizons. Full details on preprocessing

are provided in Appendix A.

Table 5.3: Real-world medical dataset properties. The number in parentheses
under the training example column indicates how many examples were used for
training when a calibration set was required, such as in the case of CoRNNs.

Dataset # Training sequences Window length T Prediction horizon H

MIMIC-III [63] 3823 (2000) [3, 47] 2
EEG [64] 19200 (15360) 40 10

COVID-19 [65] 300 (200) 100 50

Table 5.4: Performance of the uncertainty forecasters on three real-world
datasets. Coverage refers to empirical joint coverage (higher is better), and is
averaged over five random splits of the dataset and training seeds. Prediction interval
lengths (lower is better) are averaged over the prediction horizons of a single dataset
realisation.

MIMIC-III EEG COVID-19

Model Coverage CI/PI lengths Coverage CI/PI lengths Coverage CI/PI lengths

DP-RNN 39.0 ± 5.4% 3.71 ± 0.00 8.3 ± 10.3% 7.91 ± 0.55 0.0 ± 0.0% 51.46 ± 24.02
MQ-RNN 87.6 ± 2.7% 17.33 ± 0.31 49.1 ± 3.0% 21.42 ± 2.27 14.0 ± 7.1% 122.06 ± 57.98
CoRNN 94.6 ± 1.0% 22.24 ± 0.04 96.7 ± 0.4% 60.87 ± 13.98 89.2 ± 6.4% 635.71 ± 400.18

Results

Table 5.5: Example ranges of independent coverage and MAEs averaged over the
horizon steps.

MIMIC-III EEG COVID-19

Model Coverage range MAE Coverage range MAE Coverage range MAE

DP-RNN [44.6%, 48.8%] 2.07 ± 2.22 [35.9%, 54.8%] 5.60 ± 6.29 [22.5%, 67.5%] 28.90 ± 41.53
MQ-RNN [88.8%, 90.0%] 4.87 ± 5.16 [85.3%, 90.2%] 5.50 ± 6.26 [80.0%, 93.8%] 34.71 ± 43.87
CoRNN [94.2%, 94.4%] 4.47 ± 5.44 [98.6%, 99.7%] 5.23 ± 5.51 [97.5%, 100.0%] 45.21 ± 66.39

Performance of the models is summarised in Table 5.4. We first note that, similar

to the synthetic data experiments, the underlying LSTM model of the proposed

CoRNN architecture had half as many training instances available as the competing

baselines—some of the training instances had to be used for the conformal calibra-

tion procedure—while having the same hyperparameters. However, CoRNN still

35

obtains the highest coverage for all datasets, and is the only model to empirically

achieve the target joint coverage rates. While this seems to disproportionately affect

the efficiency of CoRNN intervals, which seem to be wide, we see that the predic-

tions are indeed valid across the range of scenarios. In other words, CoRNN adapts

its PI widths to reliably match the required target coverage, increasing PI width

for unpredictable datasets. On the other hand, the remaining baselines revert to

unreliable predictions, especially in less certain scenarios (COVID-19), and even the

dataset/model combination that has achieved the highest coverage with competi-

tive interval width (i.e. MQ-RNN on MIMIC-III), the intervals still arguably lack

validity.

We additionally show the details on independent coverage rates for different predic-

tion horizons (rather than joint coverage of the entire trajectory) in Table 5.5: here

we observe that CoRNN outperforms the baselines on prediction of both individual

and joint coverage levels.

Table 5.6: Bonferroni-corrected and uncorrected empirical coverages of the CoRNN
model, as run on a single realisation of the dataset split.

MIMIC-III EEG COVID-19

Model Joint Independent Joint Independent Joint Independent

CoRNN 93.4% [94.2%, 94.4%] 97.1% [98.6%, 99.7%] 92.5% [97.5%, 100.0%]
Uncorrected 88.0% [89.8%, 90.0%] 57.2% [85.8%, 90.7%] 68.8% [87.5%, 98.8%]

Finally, we briefly explore the importance of and motivation behind the Bonferroni

correction procedure for the CoRNN model, where the original significance level α

is divided by horizon length H in order to maintain joint coverage rates across the

forecast horizon. Table 5.6 shows that uncorrected calibration scores generally lead

to poor joint coverage yet similar independent coverage (as the Bonferroni procedure

corrects for multiple comparisons across the horizon, without affecting individual

coverage rates). We again note that the estimates in this case are noisy due to small

testing and empirical calibration set sizes, especially for noisy COVID-19 data.

36

Summary

In this chapter, we have compared the effectiveness of the proposed CoRNN model

against a set of alternative uncertainty forecasters, each from a different class of

uncertainty estimation paradigm (Bayesian, quantile, frequentist). We have demon-

strated that CoRNN (Pareto) dominated all baselines; in case of synthetic datasets,

it had the best validity and efficiency trade-off (i.e. had the closest to target coverage

with the minimal interval widths) while being computationally efficient (in this way

outperforming the state-of-the-art BJ-RNN baseline). In case of real-world datasets,

CoRNN was the only model to reliably achieve coverage validity. We additionally

demonstrated qualitative properties of CoRNN uncertainty forecasting, and the im-

portance of the Bonferroni correction step in our proposed conformal forecasting

procedure in order to achieve joint coverage across the prediction horizon.

37

6 Extensions

In this chapter, we briefly explore a further extension of our work, which is the nor-

malisation technique used in ICP to derive adaptive (and hopefully more efficient)

interval widths.

6.1 Normalised inductive conformal prediction

In standard conformal prediction, once the underlying model is trained on the train-

ing dataset and calibrated on the calibration datasetm, the prediction interval width,

2ε̂ (see Section 3.4 in Chapter 3), will be the same for every subsequent example

(in case of CoRNN, the intervals will be horizon-specific, but not vary across ex-

amples). While this gives valid intervals, they are not as efficient as the widths are

determined by the residuals of the most difficult examples with the largest residuals

in the dataset. Normalisation [54], then, tries to return the interval widths that are

example-specific; i.e. if the model knows that the example is “simple” to forecast,

the intervals will be more narrow; if the example is very unusual, the intervals will

be wider.

This is achieved through a modification to the nonconformity score Ri as follows:

Ri =
|y(i) −M(x(i))|
exp(µ(i)) + β

, (6.1)

where the numerator is as before, and the denominator captures the “difficulty” of

38

the example through an estimate of the residual error:

µ(i) = log |y(i) −M(x(i))|, (6.2)

and β is the sensitivity parameter. The estimates µ(i) are obtained through training

another model (often a neural network such as a multilayer perceptron) on the ex-

amples in the proper training set and their log residuals:
{

(x(i), log |y(i) − ŷ(i)|)
}n
i=1

.

We learn the logarithms of errors for them to both have a smaller range across exam-

ples, and to enforce the errors to be positive once they are raised to the exponent as

Ri is computed. As the difficulty score µ(i) is example-specific, for the new example

x(l+1) the new interval obtained is

Γα(x(l+1)) = [ŷ(l+1) − ε̂(exp(µ(l+1)) + β), ŷ(l+1) + ε̂(exp(µ(l+1)) + β)]. (6.3)

This is analogously extended to the forecast horizon-specific set of ε̂h in conformal

time-series forecasting procedure.

6.2 Experiments

We carry out the experiments on the synthetic datasets discussed in Chapter 5

to investigate the effects of the normalised nonconformity scores on the quality of

prediction intervals. Since CoRNN is designed to work on time-series of different

lengths, the normalisation network is also trained on a recurrent neural network, con-

trary to the recommendation in literature (see e.g. Papadopoulos and Haralambous

[54]) to use simple predictors. We use the same parameters for the normalisation

RNN as the underlying model M ; we set the sensitivity parameter β = 1.

The results of these experiments are shown in Tables 6.1 and 6.2. We observe that,

with the simplistic hyperparameter setting, we achieve the opposite effect from the

39

Table 6.1: Empirical joint coverage of CoRNN and normalised CoRNN
(CoRNN-n) baselines run on autoregressive synthetic datasets (averaged
across prediction horizons); reported as mean ± std over five random seeds (exclud-
ing unstable seeds).

Empirical joint coverage

Noise mode CoRNN CoRNN-n

Static
σ2
t = 0.1n

n = 1 93.3 ± 2.0% 93.0 ± 0.8%
n = 2 93.0 ± 1.2% 93.0 ± 1.2%
n = 3 93.4 ± 1.5% 93.7 ± 1.4%
n = 4 94.8 ± 0.9% 93.8 ± 0.5%
n = 5 94.9 ± 0.7% 95.2 ± 0.6%

Time-dependent
σ2
t = 0.1tn

n = 1 92.9 ± 1.5% 93.0 ± 0.8%
n = 2 91.2 ± 0.8% 91.7 ± 1.4%
n = 3 92.1 ± 1.2% 91.9 ± 0.5%
n = 4 91.4 ± 1.8% 90.6 ± 1.1%
n = 5 89.7 ± 0.8% 90.7 ± 1.0%

Table 6.2: Mean interval widths of CoRNN and normalised CoRNN
(CoRNN-n) baselines run on autoregressive synthetic datasets (reported
as mean ± std over the prediction horizon). This reports results for one of five
available random seeds. Empty results mean that training of the underlying RNN
was unstable for the seed.

Interval widths

Noise mode CoRNN CoRNN-n

Static
σ2
t = 0.1n

n = 1 — —
n = 2 18.78 ± 5.10 20.02 ± 5.10
n = 3 18.22 ± 4.51 19.73 ± 4.59
n = 4 17.72 ± 4.25 20.05 ± 5.58
n = 5 20.06 ± 5.54 22.59 ± 6.90

Time-dependent
σ2
t = 0.1tn

n = 1 20.42 ± 3.93 22.77 ± 4.96
n = 2 21.84 ± 4.31 25.65 ± 4.91
n = 3 28.08 ± 5.48 30.62 ± 6.23
n = 4 33.20 ± 6.30 35.61 ± 7.17
n = 5 37.96 ± 6.73 40.70 ± 7.23

intended one: while the intervals stay valid, they become less, rather than more,

efficient. One reason for this is that the underlying and normalisation RNNs are both

noisy, which makes the residuals difficult to learn. This results in noisy normalisation

estimates that do not help with reducing the interval widths. Another reason, as

discussed in Romano et al. [66], is that the standard normalisation procedure is not

adaptive to heteroscedastic datasets, where the variance of the data depends on the

time-step, which is the case in these synthetic datasets. Making the interval widths

more robust to the noisy underlying and normalising RNNs as well as more adaptive

to heteroscedasticity is an interesting problem for future work.

40

7 Conclusion

In this work, we proposed a novel technique for multi-horizon time-series forecast

uncertainty estimation. Unlike the previous works, the new conformal forecasting

framework—an adaptation of inductive conformal prediction to the multi-horizon

time-series forecasting setting—is not only very lightweight, simple to implement,

sample efficient, without requiring any alterations alterations (such as reparameteri-

sation of the weights to probability distributions) to the underlying point forecaster,

but importantly has theoretical guarantees on the validity of joint coverage across

the prediction horizon. We proposed a concrete instantiation of the framework—the

conformal recurrent neural network (CoRNN)—and compared it to existing base-

lines of different paradigms in a variety of synthetic and real-world settings. We

showed that CoRNN outperformed all baselines—Pareto-dominating the state-of-

the-art while being more computationally efficient and scalable to large datasets.

We note that, while we proposed an RNN-based conformal forecaster, the general

conformal forecasting framework is applicable to any underlying model that can

produce direct multi-horizon forecasts.

Future work will focus on increasing the overall efficiency of prediction intervals by

reducing their width and making them more adaptive to individual observations,

including a multi-variate time-series setting.

41

A Additional experiment details

A.1 Synthetic data

The hyperparameters are provided in Table A.1 and the prediction interval widths

for different realisations of randomly generated datasets are given in Table A.2.

Table A.1: Training hyperparameters.

Parameter Value

Training samples 1000
Calibration samples 1000
Test samples 500
Sequence length L 10
Prediction horizon S 5
Autoregressive mean µx 1
Autoregressive variance σ2x 2
Periodicity s None
Amplitude u 5

Epochs 1000
Batch size 100
Embedding size 20
Learning rate 0.01
Underlying RNN type LSTM

Target coverage 1− α 90%

A.2 Real-world datasets

MIMIC-III We collect the data of patients on antibiotics from the MIMIC-III

dataset [63], and filter out the sequences of total length at least 5, resulting in 4323

sequences. From these sequences we pick out the white blood cell (high) count as the

feature for the univariate time-series. We split the sequences randomly into training,

42

Table A.2: CoRNN prediction interval lengths on synthetic dataset experiments for
the two different noise settings and different random seeds. Reported as mean ±
std over the forecast horizon.

Noise mode CoRNN PI lengths

Static
σ2
t = 0.1n

n = 1 – – 17.28 ± 4.59 18.10 ± 4.59 19.21 ± 4.98
n = 2 18.78 ± 5.10 19.14 ± 4.71 17.82 ± 4.73 19.20 ± 4.98 18.66 ± 5.15
n = 3 18.22 ± 4.51 18.23 ± 4.44 18.21 ± 4.64 19.61 ± 5.11 17.55 ± 4.11
n = 4 17.72 ± 4.25 19.17 ± 5.08 19.50 ± 4.99 19.62 ± 4.88 19.19 ± 4.55
n = 5 20.06 ± 5.54 18.65 ± 4.55 19.07 ± 4.74 19.41 ± 4.34 16.71 ± 4.02

Time-dependent
σ2
t = 0.1tn

n = 1 20.42 ± 3.93 19.68 ± 4.47 19.70 ± 4.90 20.37 ± 4.90 18.98 ± 3.98
n = 2 21.84 ± 4.31 23.88 ± 4.20 22.90 ± 3.83 23.58 ± 4.39 22.70 ± 4.99
n = 3 28.08 ± 5.48 28.14 ± 5.32 28.93 ± 5.97 27.75 ± 4.72 27.14 ± 4.64
n = 4 33.20 ± 6.30 33.99 ± 6.33 33.76 ± 5.01 34.35 ± 5.68 33.98 ± 5.63
n = 5 37.96 ± 6.73 39.09 ± 6.87 39.51 ± 7.32 39.36 ± 6.73 40.09 ± 8.11

calibration and test datasets. We pick the constant time horizon of 2, which is to

account for the shortest sequences being of length 5, and use the rest of the sequence

as model input.

EEG The EEG dataset, available at https://archive.ics.uci.edu/ml/datasets/EEG+

Database, was used as the source for the EEG signal time-series. The dataset con-

tains the data for control and alcoholic subjects responding to a visual stimulus

of three types. We used the medium version of the dataset, involving 10 control

and 10 alcoholic subjects, though for the experiments we only used the control

subjects—from the summaries provided, control subject EEG responses seemed to

be more difficult to predict. Each subject had repeated trials for every type of

stimulus, and each trial had a time-series for the 64 channels obtained from their

corresponding sensor. We treated every individual trial and each of the 64 channels

as a separate time-series example, resulting in 19200 sequences in the training set.

To keep training efficient, we downsampled the sequences (normally of length 255)

to a total length 50, which we further split into the training sequence of 40 and

prediction horizon 10. The training and test dataset splits are readily provided in

the UCI repository, and for repeated trials we used different subsets for calibration

and different model training seeds.

43

https://archive.ics.uci.edu/ml/datasets/EEG+Database
https://archive.ics.uci.edu/ml/datasets/EEG+Database

COVID-19 The data is available at https://coronavirus.data.gov.uk/. We picked

the data of different regions of the same country in order to follow the exchangeabil-

ity assumption as closely as possible, while the data from different countries risks

having much larger distribution shifts due to a large variation of factors like gov-

ernment lockdown policies. Given the setup of the conformal prediction framework,

we looked for the data that would have a sufficiently large number of independent

sequences—the lower tier local authority split gives a total number of 380 sequences,

which over repeated trials we would randomly split into the test set of 80 sequences

and the the rest between the training and calibration sets. We picked the data of

daily new cases over the course of 150 days starting mid-September 2020 and ending

mid-February 2021, which we further split into the input sequence of 100 examples

(ending Christmas 2020) and using the remaining 50 days as the testing sequence.

We chose these dates to capture interesting properties of changing government lock-

down policies and so that the two waves are separated between the observed and

the to-be-predicted sequence.

Hyperparameters The training hyperparameters (Table A.3) mostly follow those

provided in previous work [21] and are kept the same for new experiments in order

to ensure fair comparison between the baselines. For the CoRNN model, the total

training data available was split between the training and calibration sets, and the

other baselines used all available training data to train the underlying RNN model.

44

https://coronavirus.data.gov.uk/

Table A.3: Training hyperparameters for the real-world datasets.

Parameter MIMIC-III EEG COVID-19

Training samples 3823 (2000) 19200 (15360) 300 (200)
Calibration samples 1823 3840 100
Test samples 500 19200 80
Sequence length L [3, 47] 40 100
Prediction horizon S 2 10 50

Epochs 1000
Batch size 150
Embedding size 20
Learning rate 0.01
Dropout probability (for DP-RNN) 0.5
Underlying RNN type LSTM

Target coverage 1− α 90%

45

Bibliography

[1] Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna
Menon, and KP Soman. Stock price prediction using lstm, rnn and cnn-sliding
window model. In 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages 1643–1647. IEEE, 2017.

[2] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial
time series using stacked autoencoders and long-short term memory. PloS one,
12(7):e0180944, 2017.

[3] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka. A multi-horizon quantile recurrent forecaster. arXiv preprint
arXiv:1711.11053, 2017.

[4] Lingxue Zhu and Nikolay Laptev. Deep and confident prediction for time series
at uber. In 2017 IEEE International Conference on Data Mining Workshops
(ICDMW), pages 103–110. IEEE, 2017.

[5] Bryan Lim, Ahmed Alaa, and Mihaela van der Schaar. Forecasting treatment
responses over time using recurrent marginal structural networks. In Proceed-
ings of the 32nd International Conference on Neural Information Processing
Systems, pages 7494–7504, 2018.

[6] Ahmed M Alaa and Mihaela van der Schaar. Attentive state-space modeling
of disease progression. In Advances in Neural Information Processing Systems,
pages 11334–11344, 2019.

[7] Benjamin Shickel, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi.
Deep ehr: a survey of recent advances in deep learning techniques for electronic
health record (ehr) analysis. IEEE journal of biomedical and health informatics,
22(5):1589–1604, 2017.

[8] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks
for language modeling. In Thirteenth annual conference of the international
speech communication association, 2012.

[9] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation mod-
els. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1700–1709, 2013.

[10] Christian Gollier. The economics of risk and uncertainty. Edward Elgar Pub-
lishing Limited, 2018.

[11] Michael W Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy
Nixon, Ghassen Jerfel, Katherine Heller, and Andrew M Dai. Analyzing the

46

role of model uncertainty for electronic health records. In Proceedings of the
ACM Conference on Health, Inference, and Learning, pages 204–213, 2020.

[12] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? arXiv preprint arXiv:1703.04977, 2017.

[13] Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and An-
drew Gordon Wilson. A simple baseline for bayesian uncertainty in deep learn-
ing. arXiv preprint arXiv:1902.02476, 2019.

[14] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior
networks. In Advances in Neural Information Processing Systems, pages 7047–
7058, 2018.

[15] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Advances
in Neural Information Processing Systems (NeurIPS), pages 6402–6413, 2017.

[16] Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent neu-
ral networks. arXiv preprint arXiv:1704.02798, 2017.

[17] Jen-Tzung Chien and Yuan-Chu Ku. Bayesian recurrent neural network for lan-
guage modeling. IEEE transactions on neural networks and learning systems,
27(2):361–374, 2015.

[18] Derrick T Mirikitani and Nikolay Nikolaev. Recursive bayesian recurrent neural
networks for time-series modeling. IEEE Transactions on Neural Networks, 21
(2):262–274, 2009.

[19] Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapu-
ram, David Salinas, Valentin Flunkert, and Tim Januschowski. Probabilistic
forecasting with spline quantile function rnns. In The 22nd international con-
ference on artificial intelligence and statistics, pages 1901–1910. PMLR, 2019.

[20] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. Deep state space models for time series
forecasting. Advances in neural information processing systems, 31:7785–7794,
2018.

[21] Ahmed Alaa and Mihaela van der Schaar. Frequentist uncertainty in recurrent
neural networks via blockwise influence functions. In International Conference
on Machine Learning, pages 175–190. PMLR, 2020.

[22] Ahmed Alaa and Mihaela van der Schaar. Discriminative jackknife: Quan-
tifying uncertainty in deep learning via higher-order influence functions. In
International Conference on Machine Learning, pages 165–174. PMLR, 2020.

[23] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in
a random world. Springer Science & Business Media, 2005.

[24] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal
of Machine Learning Research, 9(3), 2008.

47

[25] David JC MacKay. A practical bayesian framework for backpropagation net-
works. Neural computation, 4(3):448–472, 1992.

[26] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

[27] Radford M Neal. Bayesian learning via stochastic dynamics. In Advances in
neural information processing systems, pages 475–482, 1993.

[28] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov
chain monte carlo, 2(11):2, 2011.

[29] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine learn-
ing (ICML-11), pages 681–688. Citeseer, 2011.

[30] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian
monte carlo. In International conference on machine learning, pages 1683–1691.
PMLR, 2014.

[31] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network. In International Conference on Machine
Learning, pages 1613–1622. PMLR, 2015.

[32] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple
by minimizing the description length of the weights. In Proceedings of the sixth
annual conference on Computational learning theory, pages 5–13, 1993.

[33] Alex Graves. Practical variational inference for neural networks. Advances in
neural information processing systems, 24, 2011.

[34] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[35] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic
variational inference. Journal of Machine Learning Research, 14(5), 2013.

[36] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR, 2016.

[37] Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial
intelligence and statistics, pages 207–215. PMLR, 2013.

[38] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. Advances in neural information process-
ing systems, 29:1019–1027, 2016.

[39] Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and
the dangers of dropout. In NIPS workshop on bayesian deep learning, volume
192, 2016.

[40] M Jésus Bayarri and James O Berger. The interplay of bayesian and frequentist
analysis. Statistical Science, 19(1):58–80, 2004.

48

[41] Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic
perspectives, 15(4):143–156, 2001.

[42] James Durbin and Siem Jan Koopman. Time series analysis by state space
methods. Oxford university press, 2012.

[43] Rupert G Miller. The jackknife-a review. Biometrika, 61(1):1–15, 1974.

[44] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tib-
shirani. Predictive inference with the jackknife+. The Annals of Statistics, 49
(1):486–507, 2021.

[45] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural compu-
tation, 6(1):147–160, 1994.

[46] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic opti-
mization for machine learning in linear time. The Journal of Machine Learning
Research, 18(1):4148–4187, 2017.

[47] Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan.
Uncertainty sets for image classifiers using conformal prediction. International
Conference on Learning Representations, 2021.

[48] Harris Papadopoulos. Inductive conformal prediction: Theory and application
to neural networks. In Tools in artificial intelligence. Citeseer, 2008.

[49] Jakub Kowalczewski. Normalized conformal prediction for time series data.
Degree project, 2019.

[50] Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series.
In International Conference on Machine Learning, pages 11559–11569. PMLR,
2021.

[51] Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series.
International Conference on Machine Learning, 2021.

[52] Gianluca Zeni, Matteo Fontana, and Simone Vantini. Conformal prediction: a
unified review of theory and new challenges. arXiv preprint arXiv:2005.07972,
2020.

[53] Vladimir Vovk. Transductive conformal predictors. In IFIP International Con-
ference on Artificial Intelligence Applications and Innovations, pages 348–360.
Springer, 2013.

[54] Harris Papadopoulos and Haris Haralambous. Reliable prediction intervals with
regression neural networks. Neural Networks, 24(8):842–851, 2011.

[55] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman.
Inductive confidence machines for regression. In European Conference on Ma-
chine Learning, pages 345–356. Springer, 2002.

[56] Souhaib Ben Taieb and Amir F Atiya. A bias and variance analysis for
multistep-ahead time series forecasting. IEEE transactions on neural networks
and learning systems, 27(1):62–76, 2015.

49

[57] Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian
conference on machine learning, pages 475–490. PMLR, 2012.

[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

[59] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[60] Wes McKinney et al. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.
Austin, TX, 2010.

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[62] J Durbin and SJ Koopman. Linear state space models. Time Series Analysis
by State Space Methods, pages 43–75, 2012.

[63] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling
Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony
Celi, and Roger G Mark. Mimic-iii, a freely accessible critical care database.
Scientific data, 3(1):1–9, 2016.

[64] Catherine Blake. Uci repository of machine learning databases. http://www.
ics. uci. edu/˜ mlearn/MLRepository. html, 1998.

[65] Coronavirus (COVID-19) in the UK. https://coronavirus.data.gov.uk/, 2021.
Accessed: 2021-05-25.

[66] Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quan-
tile regression. Advances in Neural Information Processing Systems, 32:3543–
3553, 2019.

50

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://coronavirus.data.gov.uk/

	Introduction
	Background and related work
	Multi-horizon time-series forecasting
	Frequentist coverage
	Bayesian recurrent neural networks
	Quantile recurrent neural networks
	Deep state-space models
	Frequentist uncertainty estimators
	Conformal prediction-inspired frameworks

	Conformal recurrent neural networks
	Conformal prediction
	Regression nonconformity scoring
	Regression inductive conformal prediction
	ICP for time-series forecasting
	CoRNN validity

	Implementation details
	Implementation of the CoRNN architecture
	Implementation of baseline architectures
	Supplementary code

	Experiments
	Experiments on synthetic data
	Experiments on real-world data

	Extensions
	Normalised inductive conformal prediction
	Experiments

	Conclusion
	Additional experiment details
	Synthetic data
	Real-world datasets

	Bibliography

